contoh 1:
Menunjukkan bahawa (p ∧ q) → p adalah 'tautology'.
• buktikan: mesti menunjukkan bahawa (p ∧ q) → p <=> T)
(p ∧ q) → p <=> ¬(p ∧ q) ∨ p Useful
<=> [¬p ∨ ¬q] ∨ p DeMorgan
<=> [¬q ∨ ¬p] ∨ p Commutative
<=> ¬q ∨ [ ¬p ∨ p ] Associative
<=> ¬q ∨ [ T ] Useful
<=> T Domination
Contoh 2:
menunjukkan bahawa (p → q) <=> (¬q → ¬p)
Buktikan:
• (p → q) <=> (¬q → ¬p)
• <=> ¬(¬q) ∨ (¬p) Useful
• <=> q ∨ (¬p) Double negation
• <=> ¬p ∨ q Commutative
• <=> p → q Useful
No comments:
Post a Comment